SINGLE TO MULTIPLE KERNEL LEARNING WITH FOUR POPULAR SVM KERNELS (SURVEY)
نویسندگان
چکیده
منابع مشابه
SPG-GMKL: Generalized Multiple Kernel Learning with a Million Kernels
Multiple Kernel Learning (MKL) aims to learn the kernel in an SVM from training data. Many MKL formulations have been proposed and some have proved effective in certain applications. Nevertheless, as MKL is a nascent field, many more formulations need to be developed to generalize across domains and meet the challenges of real world applications. However, each MKL formulation typically necessit...
متن کاملLearning SVM Classifiers with Indefinite Kernels
Recently, training support vector machines with indefinite kernels has attracted great attention in the machine learning community. In this paper, we tackle this problem by formulating a joint optimization model over SVM classifications and kernel principal component analysis. We first reformulate the kernel principal component analysis as a general kernel transformation framework, and then inc...
متن کاملMultiple Kernel Clustering Framework with Improved Kernels
Multiple kernel clustering (MKC) algorithms have been successfully applied into various applications. However, these successes are largely dependent on the quality of pre-defined base kernels, which cannot be guaranteed in practical applications. This may adversely affect the clustering performance. To address this issue, we propose a simple while effective framework to adaptively improve the q...
متن کاملRelative Comparison Kernel Learning with Auxiliary Kernels
In this work we consider the problem of learning a positive semidefinite kernel matrix from relative comparisons of the form: “object A is more similar to object B than it is to C”, where comparisons are given by humans. Existing solutions to this problem assume many comparisons are provided to learn a high quality kernel. However, this can be considered unrealistic for many real-world tasks si...
متن کاملA multiple kernel framework for inductive semi-supervised SVM learning
We investigate the benefit of combining both cluster assumption and manifold assumption underlying most of the semi-supervised algorithms using the flexibility and the efficiency of multiple kernel learning. The multiple kernel version of Transductive SVM (a cluster assumption based approach) is proposed and it is solved based on DC (Difference of Convex functions) programming. Promising result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Research in Engineering and Technology
سال: 2016
ISSN: 2321-7308,2319-1163
DOI: 10.15623/ijret.2016.0503066